Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Development

  • 94 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 9
  • 10
  • →
Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 mRNA translation
Vijaykumar Chennupati, … , Trang Hoang, Ramanjaneyulu Allam
Vijaykumar Chennupati, … , Trang Hoang, Ramanjaneyulu Allam
Published February 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94956.
View: Text | PDF

Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 mRNA translation

  • Text
  • PDF
Abstract

Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond–Blackfan anaemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anaemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor (RNH1) is an ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 to E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knock down in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

Authors

Vijaykumar Chennupati, Diogo F.T. Veiga, Kendle M. Maslowski, Nicola Andina, Aubry Tardivel, Eric Chi-Wang Yu, Martina Stilinovic, Cedric Simillion, Michel A. Duchosal, Manfredo Quadroni, Irene Roberts, Vijay G. Sankaran, H. Robson MacDonald, Nicolas Fasel, Anne Angelillo-Scherrer, Pascal Schneider, Trang Hoang, Ramanjaneyulu Allam

×

Critical roles of αII spectrin in brain development and epileptic encephalopathy
Yu Wang, … , Paul M. Jenkins, Jack M. Parent
Yu Wang, … , Paul M. Jenkins, Jack M. Parent
Published January 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95743.
View: Text | PDF

Critical roles of αII spectrin in brain development and epileptic encephalopathy

  • Text
  • PDF
Abstract

The nonerythrocytic α-spectrin-1 (SPTAN1) gene encodes the cytoskeletal protein αII spectrin. Mutations in SPTAN1 cause early infantile epileptic encephalopathy type 5 (EIEE5); however, the role of αII spectrin in neurodevelopment and EIEE5 pathogenesis is unknown. Prior work suggests that αII spectrin is absent in the axon initial segment (AIS) and contributes to a diffusion barrier in the distal axon. Here, we have shown that αII spectrin is expressed ubiquitously in rodent and human somatodendritic and axonal domains. CRISPR-mediated deletion of Sptan1 in embryonic rat forebrain by in utero electroporation caused altered dendritic and axonal development, loss of the AIS, and decreased inhibitory innervation. Overexpression of human EIEE5 mutant SPTAN1 in embryonic rat forebrain and mouse hippocampal neurons led to similar developmental defects that were also observed in EIEE5 patient-derived neurons. Additionally, patient-derived neurons displayed aggregation of spectrin complexes. Taken together, these findings implicate αII spectrin in critical aspects of dendritic and axonal development and synaptogenesis, and support a dominant-negative mechanism of SPTAN1 mutations in EIEE5.

Authors

Yu Wang, Tuo Ji, Andrew D. Nelson, Katarzyna Glanowska, Geoffrey G. Murphy, Paul M. Jenkins, Jack M. Parent

×

Zinc transporter Slc39a8 is essential for cardiac ventricular compaction
Wen Lin, … , Jonathan A. Epstein, Daniel J. Rader
Wen Lin, … , Jonathan A. Epstein, Daniel J. Rader
Published January 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96993.
View: Text | PDF

Zinc transporter Slc39a8 is essential for cardiac ventricular compaction

  • Text
  • PDF
Abstract

Isolated left ventricular noncompaction (LVNC) results from excessive trabeculation and impaired myocardial compaction during heart development. The extracellular matrix (ECM) that separates endocardium from myocardium plays a critical but poorly understood role in ventricular trabeculation and compaction. In an attempt to characterize solute carrier family 39 member 8–null (Slc39a8-null) mice, we discovered that homozygous null embryos do not survive embryogenesis, and exhibit a cardiac phenotype similar to human LVNC. Slc39a8 encodes a divalent metal cation importer that has been implicated in ECM degradation through the zinc/metal regulatory transcription factor 1 (Zn/MTF1) axis, which promotes the expression of ECM-degrading enzymes, including Adamts metalloproteinases. Here, we have shown that Slc39a8 is expressed by endothelial cells in the developing mouse heart, where it serves to maintain cellular Zn levels. Furthermore, Slc39a8-null hearts exhibited marked ECM accumulation and reduction of several Adamts metalloproteinases. Consistent with the in vivo observations, knockdown of SLC39A8 in HUVECs decreased ADAMTS1 transcription by decreasing cellular Zn uptake, and as a result, MTF1 transcriptional activity. Our study thus identifies a gene underlying ventricular trabeculation and compaction development, and a pathway regulating ECM during myocardial morphogenesis.

Authors

Wen Lin, Deqiang Li, Lan Cheng, Li Li, Feiyan Liu, Nicholas J. Hand, Jonathan A. Epstein, Daniel J. Rader

×

PBX transcription factors drive pulmonary vascular adaptation to birth
David J. McCulley, … , Licia Selleri, Xin Sun
David J. McCulley, … , Licia Selleri, Xin Sun
Published December 18, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93395.
View: Text | PDF

PBX transcription factors drive pulmonary vascular adaptation to birth

  • Text
  • PDF
Abstract

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme–specific deletion of CDH-implicated genes encoding pre–B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.

Authors

David J. McCulley, Mark D. Wienhold, Elizabeth A. Hines, Timothy A. Hacker, Allison Rogers, Ryan J. Pewowaruk, Rediet Zewdu, Naomi C. Chesler, Licia Selleri, Xin Sun

×

Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma
Arvind M. Venkatesan, … , Michael Green, Craig J. Ceol
Arvind M. Venkatesan, … , Michael Green, Craig J. Ceol
Published December 4, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92513.
View: Text | PDF

Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma

  • Text
  • PDF
Abstract

Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers.

Authors

Arvind M. Venkatesan, Rajesh Vyas, Alec K. Gramann, Karen Dresser, Sharvari Gujja, Sanchita Bhatnagar, Sagar Chhangawala, Camilla Borges Ferreira Gomes, Hualin Simon Xi, Christine G. Lian, Yariv Houvras, Yvonne J. K. Edwards, April Deng, Michael Green, Craig J. Ceol

×

Paracrine osteoprotegerin and β-catenin stabilization support synovial sarcomagenesis in periosteal cells
Jared J. Barrott, … , Mario R. Capecchi, Kevin B. Jones
Jared J. Barrott, … , Mario R. Capecchi, Kevin B. Jones
Published November 20, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94955.
View: Text | PDF

Paracrine osteoprotegerin and β-catenin stabilization support synovial sarcomagenesis in periosteal cells

  • Text
  • PDF
Abstract

Synovial sarcoma (SS) is an aggressive soft-tissue sarcoma that is often discovered during adolescence and young adulthood. Despite the name, synovial sarcoma does not typically arise from a synoviocyte but instead arises in close proximity to bones. Previous work demonstrated that mice expressing the characteristic SS18-SSX fusion oncogene in myogenic factor 5–expressing (Myf5-expressing) cells develop fully penetrant sarcomagenesis, suggesting skeletal muscle progenitor cell origin. However, Myf5 is not restricted to committed myoblasts in embryos but is also expressed in multipotent mesenchymal progenitors. Here, we demonstrated that human SS and mouse tumors arising from SS18-SSX expression in the embryonic, but not postnatal, Myf5 lineage share an anatomic location that is frequently adjacent to bone. Additionally, we showed that SS can originate from periosteal cells expressing SS18-SSX alone and from preosteoblasts expressing the fusion oncogene accompanied by the added stabilization of β-catenin, which is a common secondary change in SS. Expression and secretion of the osteoclastogenesis inhibitory factor osteoprotegerin enabled early growth of SS18-SSX2–transformed cells, indicating a paracrine link between the bone and synovial sarcomagenesis. These findings explain the skeletal contact frequently observed in human SS and may provide alternate means of enabling SS18-SSX–driven oncogenesis in cells as differentiated as preosteoblasts.

Authors

Jared J. Barrott, Benjamin E. Illum, Huifeng Jin, Matthew L. Hedberg, Yanliang Wang, Allie Grossmann, Malay Haldar, Mario R. Capecchi, Kevin B. Jones

×

Hdac3 regulates lymphovenous and lymphatic valve formation
Harish P. Janardhan, … , John F. Keaney Jr., Chinmay M. Trivedi
Harish P. Janardhan, … , John F. Keaney Jr., Chinmay M. Trivedi
Published October 16, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92852.
View: Text | PDF

Hdac3 regulates lymphovenous and lymphatic valve formation

  • Text
  • PDF
Abstract

Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box–GATA–ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development.

Authors

Harish P. Janardhan, Zachary J. Milstone, Masahiro Shin, Nathan D. Lawson, John F. Keaney Jr., Chinmay M. Trivedi

×

mTORC1 loss impairs epidermal adhesion via TGF-β/Rho kinase activation
Kaushal Asrani, … , Paul Worley, Tamara L. Lotan
Kaushal Asrani, … , Paul Worley, Tamara L. Lotan
Published September 25, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92893.
View: Text | PDF

mTORC1 loss impairs epidermal adhesion via TGF-β/Rho kinase activation

  • Text
  • PDF
Abstract

Despite its central position in oncogenic intracellular signaling networks, the role of mTORC1 in epithelial development has not been studied extensively in vivo. Here, we have used the epidermis as a model system to elucidate the cellular effects and signaling feedback sequelae of mTORC1 loss of function in epithelial tissue. In mice with conditional epidermal loss of the mTORC1 components Rheb or Rptor, mTORC1 loss of function unexpectedly resulted in a profound skin barrier defect with epidermal abrasions, blistering, and early postnatal lethality, due to a thinned epidermis with decreased desmosomal protein expression and incomplete biochemical differentiation. In mice with mTORC1 loss of function, we found that Rho kinase (ROCK) signaling was constitutively activated, resulting in increased cytoskeletal tension and impaired cell-cell adhesion. Inhibition or silencing of ROCK1 was sufficient to rescue keratinocyte adhesion and biochemical differentiation in these mice. mTORC1 loss of function also resulted in marked feedback upregulation of upstream TGF-β signaling, triggering ROCK activity and its downstream effects on desmosomal gene expression. These findings elucidate a role for mTORC1 in the regulation of epithelial barrier formation, cytoskeletal tension, and cell adhesion, underscoring the complexity of signaling feedback following mTORC1 inhibition.

Authors

Kaushal Asrani, Akshay Sood, Alba Torres, Dan Georgess, Pornima Phatak, Harsimar Kaur, Amber Dubin, C. Conover Talbot Jr., Loubna Elhelu, Andrew J. Ewald, Bo Xiao, Paul Worley, Tamara L. Lotan

×

Mutations in the netrin-1 gene cause congenital mirror movements
Aurélie Méneret, … , Emmanuel Roze, David Markie
Aurélie Méneret, … , Emmanuel Roze, David Markie
Published September 25, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI95442.
View: Text | PDF

Mutations in the netrin-1 gene cause congenital mirror movements

  • Text
  • PDF
Abstract

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.

Authors

Aurélie Méneret, Elizabeth A. Franz, Oriane Trouillard, Thomas C. Oliver, Yvrick Zagar, Stephen P. Robertson, Quentin Welniarz, R.J. MacKinlay Gardner, Cécile Gallea, Myriam Srour, Christel Depienne, Christine L. Jasoni, Caroline Dubacq, Florence Riant, Jean-Charles Lamy, Marie-Pierre Morel, Raphael Guérois, Jessica Andreani, Coralie Fouquet, Mohamed Doulazmi, Marie Vidailhet, Guy A. Rouleau, Alexis Brice, Alain Chédotal, Isabelle Dusart, Emmanuel Roze, David Markie

×

Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism
Lorna A. Mullan, … , Michael D. Briggs, Raymond P. Boot-Handford
Lorna A. Mullan, … , Michael D. Briggs, Raymond P. Boot-Handford
Published September 18, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93094.
View: Text | PDF

Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism

  • Text
  • PDF
Abstract

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress–associated dwarfism MCDS.

Authors

Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 9
  • 10
  • →

No posts were found with this tag.

Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts