SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Overall expression of each miRNA in A549 cells. A549 cells were transfected with the indicated miRNA-expressing plasmids. Expression of the miRNA was assayed by qRT-PCR and normalized to vector transfected cells.

Supplementary Figure S2. MiR-107 colocalizes with let-7 in the cytoplasm. (A) Existence of Ago1 in a complex of synthesized miRNAs. Cy3-labeled miR-107 or nonspecific miR-26a was cotransfected into A549 cells with cy5-labeled let-7 mRNA and then immunoprecipitated with anti-cy3/cy5 antibodies to determine if they could recruit Ago1. (B) *In vivo* cellular localization of miR-107 and let-7 in A549 cells visualized by confocal microscopy.

Supplementary Figure S3. FRET between mutmiR-107 and mutlet-7. Cells with colocolization of mutmiR-107/mutlet-7a observed by confocal microscopy (Supplementary Figure S2B) were bleached repeatedly by λ = 633 nm, and the fluorescence intensity of cy3-labeled miR-107 was subsequently monitored at λ = 575-615 nm before and after

photobleaching. The FRET efficiency at each location was measured. a-d: colocalized complexes; e: complex without colocalization.

Supplementary Figure S4. Inverse correlation between miR-107 and let-7 family miRNAs in public database - NCI-60 cancer cell panel (EMBL-EBI: E-MTAB-327)

Supplementary Figure S5. Expression of let-7 precursors after depletion of miR-107. Total RNA was isolated from the indicated cells transfected with an miR-107 antagomir and than assayed by qRT-PCR.

Supplementary Figure S6. Effect of miR-107 on the degradation of let-7 precursors. An miR-107 antagomir was introduced into H1299 cells in the presence of 1 μ g/ml actinomycin D. Total RNA was isolated and assayed by quantitative PCR for pri-let-7 (A), pre-let-7 (B), and (C) miR-26a.

Supplementary Figure S7. Effect of miR-107 on let-7-mediated HMGA2 inhibition. Cells were treated with the indicated antagomirs and assayed by Western blot 36 hours after transfection. **Supplementary Figure S8. MiR-107 expression did not promote soft agar growth in let-7-deficienct cells.** The indicated miRNAs were stably transfected into let-7- deficient H661 cells. Soft agar assays were performed over 14 days.

Supplementary Figure S9. MiR-107 antagonized let-7-suppressed self-renewal ability in breast cancer cells. (A, B) Expression of breast cancer stem cell markers. assayed by (A) RT-PCR and (B) immunofluorescence staining. (C, D) Effect of miR-107 on mammosphere formation. Mammosphere formation was performed 16 hours after transfection, and spheres were measured after 5 days.

Supplementary Figure S10. Expression of let-7a in Normal/Tumor portions of breast cancer tissues. We isolated RNAs from paired tumor and non-tumor samples. Expression of let-7a was detected by qRT-PCR. The level of let-7a in non-tumor tissue was used as a reference (= 1) and the relative fold expression in the tumor tissue was determined.

Supplementary Figure S11. Correlation between miR-107 and let-7 levels in human lung cancer. Correlation between miR-107 and let-7 levels in human lung tumor tissues. Real-time PCR was used to detect expression of miR-107 and let-7. Each point on the graph corresponds to the relative expression level from an individual patient. Supplementary Figure S12. Let-7a level predicts poor clinical outcome in patients withbreast cancer. The log-rank test (2-sided) was used to compare differences between groups.(A) Disease-free survival of patients with different let-7a levels. (B) Overall survival ofpatients with different let-7a levels..

Supplementary Figure S13. Let-7 activity affected by miR-103. A549 cells were cotransfected with wild-type or mutant lin-41 and the indicated miRNAs. Firefly luciferase reporter activity was normalized to renilla luciferase. MiR-26a was included as a nonspecific miRNA.

Supplementary Figure S14. Correlation between levels of miR-103 and let-7a in human breast cancer tissues. qRT-PCR was used to detect expression of miR-103 and let-7a. Each point on the graph corresponds to the relative expression levels from an individual patient. We normalized let-7a and miR-103 levels with U6 to calculate their relative expression levels.

Supplementary Figure S15. Effects of let-7 members on miR-107 expression. T47D cells were transfected with indicated antagomirs of let-7 members. Forty-eight hours after

transfection, the level of miR-107 was measured by using qRT-PCR.

Supplementary Figure S16. Expression of let-7 family members in the livers (A) and kidneys (B) of miR-107 knockout (KO) mice. Livers and kidneys were isolated from wild-type and miR-107 KO mice (n = 3). Expression of miRNAs was determined by real-time RT-PCR using specific probes.

Supplementary Table S1. Incidence of tumor formation and metastasis

Inoculated	Tumors	Lung Metastasis		
Vector	8/9	6/9		
miR-107	8/9	7/9		
mutmiR-107	7/9	5/9		
let-7	3/9	0/9		
let-7/miR-107	8/9	4/9		
let-7/miR-107 ^{M2}	4/9	0/9		
let-7/mutmiR-107	3/9	0/9		

by 4T1 cells in mice.

characteristics	let-7a low (n=55)	let-7a high (n=57)	<i>P</i> value
Age	62.3	62.9	<i>N.S.</i>
Stage, no of patients			
I-II	20	42	*<0.001
III-IV	35	15	
Tumor status, no of patients			
T1	19	31	*0.035
T2-T4	36	26	
Node status, no of patients			
N0	23	44	*<0.001
N1-N3	32	13	
Distant metastasis, no of			
patients			
M0	40	53	*0.0043
M1	15	4	

Supplementary Table S2. Clinical pathological characteristics of breast cancer patients

with associated let-7a expression.

*P < 0.05 Significance of association was determined using a Chi-square test.

SUPPLEMENTARY FIGURES

Supplementary Figure S1.

Group Specific miRNA expression (fold)	miR-346	miR-329	miR-107	miR-330	miR-374	miR-202*	miR-26a
miR-346	162	1.0	12	1.1	09	1.0	12
miR-329	0.9	18.5	1.1	09	1.0	1.0	12
miR-107	0.9	1.0	19.4	0.9	1.0	1.0	1.0
miR-330	1.0	1.0	1.0	16.8	1.0	0.9	1.1
miR-374	1.1	1.0	1.0	1.1	16.9	0.9	1.0
miR-202*	1.0	1.0	12	09	1.1	182	1.0
miR-26a	0.9	1.1	0.9	09	09	1.1	17.6
miR-376a	1.0	09	1.0	1.0	09	1.0	09
let-7	1.0	1.1	0.4	1.0	09	1.1	1.0

Fold: Normalized with vector control

Supplementary Figure S2A.

Supplementary Figure S2B.

Supplementary Figure S3.

cy3

cy5

96.2

96.2

merge

Supplementary Figure S4.

Supplementary Figure S5.

Supplementary Figure S6.

Supplementary Figure S7.

	MDA231			MCF-7			H1299		
Scramble	+	—	_	+	_	_	+	—	
Anti-miR-107	—	+	—		+			+	—
Anti-miR-26a	—	_	+	_	—	+	_	_	+
HMGA2		-	•	-	-	-	-	-	
α -tubulin	-			-	-	-	-	-	

Supplementary Figure S8.

Supplementary Figure S9.

Supplementary Figure S10.

Supplementary Figure S11.

Supplementary Figure S12.

Supplementary Figure S13.

Supplementary Figure S14.

Supplementary Figure S15.

