Abstract

Although opioids are highly effective analgesics, they are also known to induce cellular adaptations resulting in tolerance. Experimental studies are often performed in the absence of painful tissue injury, which precludes extrapolation to the clinical situation. Here we show that rats with chronic morphine treatment do not develop signs of tolerance at peripheral μ-opioid receptors (μ-receptors) in the presence of painful CFA-induced paw inflammation. In sensory neurons of these animals, internalization of μ-receptors was significantly increased and G protein coupling of μ-receptors as well as inhibition of cAMP accumulation were preserved. Opioid receptor trafficking and signaling were reduced, and tolerance was restored when endogenous opioid peptides in inflamed tissue were removed by antibodies or by depleting opioid-producing granulocytes, monocytes, and lymphocytes with cyclophosphamide (CTX). Our data indicate that the continuous availability of endogenous opioids in inflamed tissue increases recycling and preserves signaling of μ-receptors in sensory neurons, thereby counteracting the development of peripheral opioid tolerance. These findings infer that the use of peripherally acting opioids for the prolonged treatment of inflammatory pain associated with diseases such as chronic arthritis, inflammatory neuropathy, or cancer, is not necessarily accompanied by opioid tolerance.

Authors

Christian Zöllner, Shaaban A. Mousa, Oliver Fischer, Heike L. Rittner, Mohammed Shaqura, Alexander Brack, Mehdi Shakibaei, Waltraud Binder, Florian Urban, Christoph Stein, Michael Schäfer

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement